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Abstract 

The topologies of the composite flowfields, reconstructed by linear superposition of two-dimensional separated basic 
flows and their respective leading three-dimensional global eigenmodes, have been studied in two configurations of 
both academic and industrial interest: a transitional laminar separation bubble in two-dimensional adverse-pressure-
gradient boundary layer flow and a stalled NACA0015 airfoil.  The amplitudes considered in both linear superpositions 
are small enough for the linearization assumption to be valid. On the flat plate, where both the Tollmien-Schlichting and 
the global mode instabilities are operative, very good agreement between the results of the local and global analyses has 
been obtained as far as the TS instability mechanism is concerned. In the same configuration, the origins of the 
phenomenon of U-separation have been attributed to linear amplification of the global mode. On the other hand, on 
both the flat plate and the stalled airfoil, it is shown that amplification of the respective leading stationary global flow 
eigenmode leads to the degenerate basic flow topology being replaced by fully three-dimensional patterns, which are 
strongly reminiscent of the characteristic Stall Cells, observed experimentally on airfoils, concurrently with the onset of 
stall in both laminar and turbulent flow. 

1. Introduction 

Two phenomena associated with separated flow have long been known and have been described in the literature either 
experimentally or from a qualitative point of view. The first is U-separation [6, 3], one of the possible forms in which a 
separated flow may be classified using critical point theory; the second is the self-organization of separated flow on the 
suction side of a plane rectangular wing and/or airfoil just beyond stall into three-dimensional spanwise-periodic 
structures known as Stall Cells. Most of the phenomenological knowledge regarding stall cells has been obtained 
experimentally using oil and smoke visualization techniques on finite-wing models [2, 16].  Their emergence was 
shown not to be a tip effect [12, 5], but the result of a periodic spanwise breakdown of the separated flow region. The 
physical origins of both U-separation and the three-dimensional breakdown of the two-dimensional baseline flow are 
presently unknown.  

In the continued quest for a physical understanding of these phenomena, which can lead to theoretically-founded flow 
control methodologies, critical-point theory has been employed to the study of separated flow topology by several 
investigators. This theory emerged in the context of fluid flow analysis in the early 80’s of the last century [4, 6, 8, 3]         
and rapidly became a powerful tool in describing flow patterns in both laminar and turbulent flow. Critical point theory 
asserts that two-dimensional flow topologies are defined as degeneracies and any three-dimensional disturbance will 
lead to a new three-dimensional flowfield topology, regardless of the disturbance amplitude. To-date, different, and on 
occasion contradictory topological descriptions (i.e. characterization of the critical points and connecting streamlines) of 
laminar separation may be found in the literature, a fact which is hardly surprising given the richness of the different 
geometries on and flow conditions under which the phenomenon of separation appears. However, consensus does exist 
in the description of stall cells on separated airfoils as symmetric, counter-rotating swirling structures.  

Flow instability is known to play a decisive role in configurations where laminar separation exists. Concurrently with 
the emergence of global instability ideas, either in its interpretation as absolute instability of weakly non-parallel flows 
or as linear modal instability of strongly non-parallel flows [13], analyses of instability of laminar separation bubbles on 
a flat-plate boundary layer have been performed. Absolute/convective instability analysis of detached boundary layers 
has shown the existence of a strong two-dimensional instability of the Kelvin-Helmholtz class; the same methodology, 
applicable to weakly-non-parallel flows of the boundary-layer type, has hinted at the possibility of self-excitation of 
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laminar separation bubbles embedded inside a boundary layer. On the other hand, the solution of the partial-derivative 
eigenvalue problem without resorting to the assumption of weak non-parallelism has provided unequivocal 
demonstrations of the potential of recirculating flows to self-excite an intrinsic instability mechanism [14], both in 
laminar separation bubbles in boundary-layer flow and in geometry-induced separation, such as the archetypal 
backward-facing step configuration. The key identification characteristics of this self-excited mechanism, namely its 
stationary and three-dimensional nature, differentiate it from the Tollmien-Schlichting / shear-layer instability. 
Hereafter, the self-excitation mechanism of instability is referred to as the global mode of laminar separation, in lieu of 
the necessity to relax the assumption of weak-nonparallelism of the basic state in order to be able to analyze instability 
of massively separated flow, such as that associated with stalled airfoils. 

The common framework of global (also referred to as BiGlobal [14]) instability analysis, whereby a two-dimensional 
strongly nonparallel basic state is considered and small-amplitude perturbations are two-dimensional functions of the 
resolved spatial coordinates – the third spatial direction is treated as homogeneous – permits addressing instability of 
both boundary-layer flows and massive-, bluff-body-like separation in a self-consistent manner. The connection of 
BiGlobal theory and topological flow considerations is made on account of the assertion of critical-point theory that any 
two-dimensional description (here the so-called basic flow of global instability analysis) is defined as a degeneracy, 
only possible in strictly two-dimensional flow, which is to be replaced by a fully three-dimensional flow topology when 
an amplified (global) perturbation is present in the flow, regardless of the disturbance amplitude.  

The present contribution thus seeks to compare the topological analyses of two separated flow configurations, in both of 
which amplified global modes exist, namely a flat-plate boundary-layer with an embedded laminar separation bubble 
and a NACA0015 airfoil at stalled conditions. The paper is organized as follows: Section 2 presents the linear BiGlobal 
instability analysis theory, the two basic flow configurations and some remarks on the theory of critical points. The 
results of the instability analyses, along with the topologies arising from the flow reconstructions are presented in 
Section 3.  A discussion of the present findings as regards U-separation, stall cells and the qualitative differences 
between topologies in the two configurations studied is furnished in Section 4. Full theoretical details on each of the 
two configurations discussed herein are respectively provided in two accompanying publications [10, 11], to which the 
interested reader is also referred. 

2. Theory 

2.1 BiGlobal instability analysis 

In the scope of a BiGlobal instability analysis [13] of the flows monitored herein, both considered incompressible and 
laminar, the three-dimensional unsteady flow field   is decomposed into a two-dimensional and a 
small-amplitude unsteady three-dimesional part,  ,  according to the Ansatz 

               (1) 

The quantity  is the so-called basic flow, while  and  respectively 
denote the streamwise and wall-normal spatial directions. The basic flow here is taken to be steady and laminar, having 
two velocity components, i.e. no crossflow has been considered, as it would be necessary for a swept wing, 

.              (2) 

The small-amplitude ( ) perturbations  are composed of amplitude functions, which are taken to be two-
dimensional functions of the resolved coordinates  and  (all three velocity components are essentially considered in 
the analysis), while the homogeneity of the linearized Navier-Stokes solved along the spanwise direction, , and time,  
permits introducing eigenmodes along both of these coordinates, 

,               (3) 

with  The spanwise wavenumber, , is related with the periodicity length along 
the homogeneous spanwise direction,  , through . In the temporal framework considered here, ω is the 
complex eigenvalue, to be determined as part of the analysis. Its real part is related with the frequency of the eigenmode 
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(  denoting a stationary and  a travelling disturbance), while a positive imaginary part,  
corresponds to exponentially amplifying disturbances. Since both  and  are real, while  and ω are complex in 
general, complex conjugation is introduced in equation (1).  A partial-differential-equation-based eigenvalue problem of 
the form 

              (4) 

is then obtained for the complex eigenvalue ω. The structure of the discrete linear operators  and  on which the 
subsequent analyses are based can be found in [14] for the flat-plate boundary layer and in [7] for the stalled wing. The 
matrix  is treated as dense, is stored and operated upon using linear-algebra software on distributed memory 
supercomputers. The near-diagonal structure of  permits avoiding storage of this matrix. A massively parallel 
implementation of the Arnoldi algorithm is used in order to recover a window of the eigenspectrum which contains the 
physically-interesting most unstable/least stable eigenvalues. Implementation details of the parallel solution algorithm 
may be found in [9]. 

2.2 The basic flows considered 

Laminar separation bubble on a flat-plate 

A non-similar inverse formulation of the boundary-layer equations on a flat plate was used to obtain the basic 
flow. Two-dimensional direct numerical simulations of the Navier-Stokes equations were dismissed in this context, in 
order to avoid unsteadiness of the solution related with instability mechanisms. The displacement thickness  
distribution with the streamwise coordinate  has been imposed, such that a separation bubble exists, with a peak 
reversed-flow velocity ~1% of the far-field. The streamwise and wall-normal extension of the basic flow is chosen to be 

, lengths being scaled with the boundary layer displacement thickness at the inflow 
boundary,   At these parameters the inflow and outflow Reynolds numbers, respectively, are 450 and 700, such that 
amplification (in the local, spatial sense) of Tollmien-Schlichting instability is expected within the domain analyzed, 
while the global mode is stable. The basic flow velocity component, , is shown on the left part of Figure 1. 

The NACA0015 airfoil at stalled conditions 

The two-dimensional steady flow around an airfoil at angle of attack α = 18o at a chord-length based Reynolds 
number   is used as the basic flow. Conformal mappings have been used to generate analytically-defined O-
type grids and a Jukowski transformation closely approximating the NACA0015 airfoil has been employed in order to 
obtain an exact match of the airfoil surface with the curvilinear coordinates used in the BiGlobal instability analysis. 
The steady laminar basic flow was obtained using the incompressible version of the unstructured finite-volume solver 
CDP, developed at the Stanford Center for Turbulence Research. Further information on the interpolation and 
conformal mapping processes, alongside the pertinent resolution studies, have been presented elsewhere [7]. The 
streamwise basic flow velocity component,  , is shown on the right part of Figure 1. 

 

Figure 1 Streamwise velocity components of the two-dimensional basic flows corresponding to a laminar separation bubble on a flat-
plate at subcritical conditions for global mode instability (left) and a Jukowski airfoil at angle of attack of 18º at conditions favoring 

amplification of the global mode of the massively separated flow (right). 
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2.3 Some concepts from critical-point theory 

The organized structures in a flowfield can be characterized through the identification of the physical locations where 
the velocity vanishes (i.e. critical points), the behavior of the streamlines in the vicinity of these points, and the manner 
in which the critical points are connected by the dividing streamlines. An exhaustive description of the theory of critical 
points may be found in several sources, eg. [4, 6, 8, 3]; for completeness, the main aspects concerning incompressible 
flows are summarized next. 

For a general three-dimensional flow field, having a velocity vector   defined on the Cartesian coordinate 
system , critical points are defined as the spatial locations  where all components of the velocity vanish and the 
slope of the streamlines is undetermined. The flow field can be locally expanded around the critical points using Taylor 
series. Considering only the linear terms in the expansion, the local behavior of the streamlines is determined by the 
Jacobian matrix, : 

  or, explicitly,   ,            (5) 

where the entries of the Jacobian matrix, , are real constants and the critical point has been set as the origin of the 
coordinate system. In the case of free-slip points, i.e. critical points in the absence of a solid wall, are the elements of 
the rate-of-deformation tensor evaluated at the origin. A second type of critical points (denominated no-slip points) 
exists, in which the slope of the streamlines is undetermined on a solid wall. Equation (5) can still be used for 
characterizing the properties of no-slip critical points, introducing  , with a transformed time-
variable, defined by  The elements of the Jacobian matrix no longer correspond to the rate-of-stress tensor, 
but second derivatives of its elements in . The limit  defines the surface streamlines or lines of surface shear 
stress, which will be the main object of the present analysis. 

In the most general case there are three planes containing solution trajectories originating at a critical point. These 
planes are defined as the eigenvector planes of the Jacobian matrix. Let  be the eigenvalues of the Jacobian, satisfying 
the characteristic equation   

,               (6) 

where  and  are the scalar invariants of the Jacobian matrix. The invariant  is the divergence of the velocity 
field, which is identically equal to zero due to incompressibility. The cubic characteristic equation (6) can have (i) three 
different real roots, (ii) all real roots with at least two of them equal, (iii) and one real- and a pair of complex roots. 
Real- and complex solutions are separated on the  space by the curve 

.               (7) 

Complex eigenvalues correspond to swirling flow regions, and are associated with  while real eigenvalues 
correspond to . The structures of two different flow fields are said to be topologically equivalent if the 
classification and connections of the critical points are identical, even though the velocity magnitudes or critical point 
locations are different. Nevertheless, bifurcations in the topology description can appear under small changes in the 
flow field.  The borderline topology between two different topology descriptions is said to be structurally unstable. This 
can be due either to critical points where at least one eigenvalue is  (a situation defined as local degeneracy) or 
saddle-to-saddle connections (global degeneracy). 

What is significant in the present context is that a random small-amplitude perturbation of the structurally unstable flow 
field is sufficient to alter the description of the topology. Given that two-dimensional flows are structurally unstable, the 
objective of the present analyses then becomes the identification of flow patterns resulting from linear superposition of 
small-amplitude eigenmodes upon the basic flows described earlier, with particular focus being placed on the stalled-
wing geometry, where the basic state has been found to be unstable to the global eigenmode of the massively separated 
flow [7]. 
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3. Results 

3.1  Eigenspectrum computation on the flat plate 

Analyses on the flat plate were performed at discrete values of the spanwise wavelength parameter and associated 
spanwise periodicity length in the ranges, and respectively. The stationary global mode was 
found to be least stable at a spanwise wavenumber . A resolution of collocation points along the 
streamwise and wall-normal direction, respectively, was required for the convergence of the most interesting part of the 
eigenspectrum. The associated computing requirements were 144 Gbytes of distributed memory and 2 hours of wall-
clock time on 144 processors of the Mare Nostrum computing facility. The three-dimensional domain considered for the 
reconstruction and topological analyses of the flow is  containing the 
entire computational domain along the streamwise and wall-normal directions and two complete spanwise periods along 
the homogeneous spanwise direction. 

3.2 Eigenspectrum computation on the NACA0015 airfoil at an angle of attack 

Instability analyses in this flow were performed at a chord-length Reynolds number  at which the two-
dimensional basic flow at an angle of attack α = 18o is steady and laminar. This permits identification of the distinct 
instability mechanisms at play in massively separated flow at their birth, prior to them leading flow to unsteadiness and 
obscuring the physical interpretation of the results. At these conditions, flow separates downstream of the leading edge, 
immediately after the leading-edge suction peak. The convergence of the eigenspectrum window containing the most 
unstable eigenvalues required the use of collocation points. Owing to the dense linear algebra operations 
used (numerical details of this approach are discussed fully in [9]), the discretized matrix requires of 
distributed memory for its storage, while computation of a Krylov subspace of dimension  takes 

of wall-time on 1024 processors of the Mare Nostrum computing facility; the same computation on 2048 
processors of the Blue Gene/P facility at the Forschungszentrum Jülich requires of wall-time for each 
wavenumber parameter value,  The computational domain used extends 16 chords in the wall-normal direction, 
although convergence of the eigenvalue corresponding to the leading stationary eigenmode is obtained with a shorter 
domain extension of 11 chords in the wall-normal direction. The eigenspectrum corresponding to  is shown in 
figure 2, where it is compared with that at  on the flat plate. While the global eigenmode is stable on the flat-
plate, its counterpart on the wing is unstable, suggesting spanwise periodic modification of the two-dimensional flow 
analyzed on account of self-excitation of the global mode of separation. 

 

Figure 2 Global eigenvalue spectra corresponding to the separation bubble in a flat-plate boundary layer at   (left) and that 
on the NACA0015 airfoil at   (Right). The leading global modes used in the respective three-dimensional flow reconstructions 

are highlighted by arrows. 

Theoretical considerations linking the small-amplitude global eigenmode with the generation and evolution of critical 
points within the three-dimensional domains considered are presented in [10] for the flat plate and in [11] for the 
NACA0015 airfoil. Here, attention is paid on comparison of the respective results, focusing on two phenomena 
explained by application of critical point theory to global linear instability analysis results: (a) field topologies resulting 
from the global eigenmode in the flat plate, in particular U-separation [6], (b) wall-surface topology (wall-streamlines) 
comparisons between results on the flat-plate and the NACA 0015 airfoil, and (c) the birth of stall cells  on the airfoil.  
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However, prior to presenting results of the topological analysis of the composite flowfields resulting from amplification 
of the global mode, the issue of comparison between the present results and the classic linear theory predictions of 
Tollmien-Schlichting instability is addressed on the flat-plate, where the selection of flow parameters is consistent with 
linear amplification of TS instability.  

In a local analysis context, Tollmien-Schlichting waves are recovered as solutions of the Orr-Sommerfeld equation 
around a basic state which varies as one moves downstream along the separation bubble and the leading eigenmode at 
each spatial location (the TS-wave) is related to that at subsequent positions. In the present global approach, the wave-
like disturbances are recovered as a family of eigenmodes, discretized according to the parameters (i.e. domain 
extension and resolution) in which the EVP is solved. Each discrete eigenmode represents the evolution of a wave with 
fixed frequency, a result shown on the left part of figure 3. The subsequent development of a wave-packet may be 
reconstructed in a global context by the non-modal behaviour of the superposition of several eigenmodes such as that 
shown in the left part of figure 3. Shown in the right part of the same figure are N-factor curves computed from results 
of the local and BiGlobal approach; they are found to be in rather good agreement within the zone of strong 
amplification, inside the laminar separation bubble.  

        

Figure 3. Left: Amplitude function corresponding to an oblique Tollmien-Schlichting wave excited by the laminar separation bubble 
(the outline of which is also shown). Right: Comparison of the disturbance amplitudes of two fixed-frequency wave-like disturbances 

recovered from global and local analyses. 

3.3 Highlights of the flow topology on the flat-plate: U-separation 

Turing to the global mode and the three-dimensional flowfield reconstruction, the loci of the critical points keep moving 
on the  plane, in line with the continuous increase of the amplitude of the eigenmode used in the linear 
reconstruction.  Figure 4 shows two characteristic situations, one at low amplitude of the global mode superimposed 
upon the basic state and one at which the amplitude at which this mode finds itself in the laminar separated boundary 
layer flow is higher, but still linear. Shown are wall- and field streamline trajectories, alongside the location and nature 
of the critical points analyzed [10]. As can be identified by the larger-amplitude image (and all other reconstructions at 
yet higher amplitudes, not shown here) the effect of the global mode on the initially two-dimensional flow is the 
appearance of the U-separation flow pattern, first defined in early classifications of flow separation [6, 8, 3]. 

            

Figure 4 U-separation [6, 8, 3] produced by the presence of the leading global eigenmode of laminar separation bubble on a flat plate 
at small amplitude (left) and slightly larger – but still linear (right). Superposed to the field- and wall-streamlines are the locations of 

the critical points, as well as their nature: S: saddle; C: center; N: node; F: focus; NF: Node-focus; (s): stable; (u): unstable. 
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3.4 Comparison of surface streamline topologies on the two separated flow configurations 

The disturbance components of the leading three-dimensional stationary global mode on the flat-plate and the stalled 
airfoil present analogous characteristics in terms of the spatial distribution of the respective amplitude functions, first 
seen in [13] on a model flow. The streamwise velocity component  is centered around the primary separated flow 
region, and attains its peak value near the primary reattachment location. A spanwise velocity component  with 
amplitude of the same order of magnitude as  is also part of the global eigenmode recovered. This amplitude function 
attains its minimum and maximum values at the spanwise locations where the streamwise component vanishes, 
resulting into a fully three-dimensional eigenmode. In the case of the flat-plate, the spanwise velocity component 
vanishes on a streamwise location between the separation and reattachment lines of the basic flow; However, in the case 
of the airfoil, this component vanishes at an additional line, which overlaps to the reattachment line of the basic flow 
[11]; this additional line arises on the airfoil on account of the satisfaction of the Kutta condition. 

In the full three-dimensional field reconstructions that follow in both the flate plate and the airfoil, the amplitude 
functions of the respective global eigenmodes are normalized such that the maximum velocity component is equal to 
unity; the global modes of each flow are then multiplied by a linearly small amplitude and are superposed to the 
respective basic state. A new set of no-slip critical points emerges at the surface, at the locations where the wall-shear 
components of the reconstructed flow vanish. Focusing on wall-streamline topologies only, one notes that with 
increasing perturbation amplitudes, the topologies of the surface streamlines eventually undergo a series of bifurcations 
– one for the plat-plate and three for the airfoil – leading to the topological patterns shown in figure 5. The range of 
amplitudes in which these bifurcations occur are in the flat-plate case and in the airfoil case, 
remaining in the linear regime. All bifurcations experienced by the two flows, starting from two-dimensionality and 
progressively resulting in the states described herein and in [10, 11], are completed within the linear regime, and no new 
bifurcations are experienced by either flow, even if the amplitudes of the linear global modes are (artificially) increased, 
even up to , where the linearity approximation ceases to be valid.  

            

Figure 5 Surface streamlines resulting from the linear superposition to the two dimensional basic flows of their leading three-
dimensional global mode. The contours are streamwise/chordwise component of the wall-shear. Shown is the streamwise domain 

extent around the primary laminar separation. Left: Flat-plate. Right: Airfoil.  

3.5 The birth of stall-cells on the airfoil 

The final surface streamline topology of the reconstructed three-dimensional flowfields in both the flat-plate and the 
airfoil shows that the connex reversed flow region present in the two-dimensional basic flow has broken periodically in 
the spanwise direction, to give rise to independent separated regions. In these regions, the streamlines are organized into 
counter-rotating swirling patterns, resembling the stall cells observed experimentally. The streamlines on the flat-plate 
extend to the infinite downstream, showing that the semi-infinite flat-plate is a simplification of the problem of the 
airfoil that looses part of the physics, as no trailing edge exists. On the other hand, on the airfoil geometry, the Kutta 
condition imposes that the ultimate detachment of the streamlines occurs at the trailing edge; this gives rise to additional 
critical points and, consequently, to additional bifurcations compared with those found on the flat-plate separation, as 
well as to an altogether substantially more complicated topological flow description; a full discussion of the theoretical 
results on either geometry may be found in [10, 11]. The key result in the context of the airfoil is that the surface 
streamlines recovered by linear superposition of the (stationary, unstable) global mode upon the massively separated 
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flow are identical to those of the well-known stall cells, recovered experimentally [2, 16] and described from a 
phenomenological point of view in the literature (e.g. [12, 5]). Such an image of a three-dimensional flowfield 
reconstruction for the NACA0015 wing at an angle of attack of 18 degrees may be seen in figure 6. 

 

Figure 6 Three-dimensional reconstruction of the stall cells generated by the linear superposition to the two-dimensional basic flow 
around a stalled airfoil of its leading stationary three-dimensional eigenmode. Graphically superposed are streamlines on the plane    

β z = 0, as well as the color-coded amplitude function of the streamwise velocity component. 

Discussion 

Two separated flow configurations of both academic and industrial interest have been analyzed using a combination of 
BiGlobal linear- [13] and critical point [4, 6, 8, 3] theories: laminar-separation bubble in boundary-layer flow on a flat 
plate at high-Reynolds number, at conditions where both TS- and global-mode instabilities are present, as well as 
massively separated flow on a high-angle of attack NACA0015 wing at low Reynolds numbers, at which the global 
mode instability dominates. While in the first configuration the linearly unstable shear layer might obscure not only the 
linear global instability but also its relation with the topological changes on the plate/wing surface, in the latter flow 
configuration the fact that the global mode dominates all other types of instability permits putting the interpretation of 
results on firm theoretical ground.  

It is known from critical point theory [4] that any steady two-dimensional flow, including the laminar separation bubble 
boundary layer and the massively separated flow on the NACA0015 wing of interest here, is structurally unstable due to 
the homogeneity assumption in the third spatial direction and the resulting singular Jacobian matrix. As a consequence, 
any three-dimensional disturbance will give rise to a three-dimensional flow field, regardless of the amplitude of such 
disturbance. Here, the structural changes that these basic flows experience on account of the two predominant linear 
instability mechanisms that they support, namely incoming amplified Tollmien-Schlichting waves and self-excited 
global modes [14], have been studied in detail. 
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After making a brief, satisfactory comparison between the results delivered by the local and the global approach on the 
local spatial amplification of the Tollmien-Schlichting instability, critical point theory has been employed in both the 
flat plate and the stalled wing in order to study the topology of field- and wall-streamlines generated by linear 
superposition of the leading global mode upon the respective basic state.  

The first finding of significance has been the identification of the U-separation phenomenon, one of the multitude of 
separated flow patterns first identified by Hornung and Perry [6] and subsequently discussed in detail by Chong et al. 
[3], as being the result of amplification of the global mode of separation. The second key finding of the present analysis 
has resulted from examining surface streamline topologies also from the point of view of critical point theory. Here, it 
has been shown [9, 10] that both on the flat plate and the stalled wing, at disturbance amplitudes small enough for the 
linearity assumption to be valid, the amplification of the global mode leads to a spanwise breakdown of the separated 
region with a fixed periodicity length, described by a set of connected no-slip (node and saddle) critical points on the 
wall surface. The effect of the three-dimensional stationary amplified global mode is to modulate the extension in the 
basic state of the connex region of reversed flow, eventually breaking it to periodic cells having a spanwise periodicity 
length predicted by global linear instability theory. This spanwise periodic breakdown gives rise to independent 
separated flow regions, in which the structure of the streamlines is organized around two counter-rotating foci. In 
addition, counter-rotating structures appear in the surface streamlines, bearing strong resemblance to the stall cells (also 
referred to as "owl-face structures" or "mushroom structures") observed in experiments on airfoils close to and beyond 
stall [2, 16, 12].  Since the origins of both phenomena of U-separation and stall cells has been identified in the same 
linear global mechanism, presently theoretically-founded flow control mechanisms are being explored in order to 
control either instability. 

The present quantitative description of the flow field topology, as one of a steady laminar two-dimensional flow 
perturbed by its leading global mode, puts for the first time on firm theoretical basis the multitude of phenomenological 
descriptions of the stall-cells observed in experiments on airfoils close to and beyond stall [16, 2, 12] (no attempt to 
describe theoretically U-separation is known to the authors). Moreover, it is worth adding here that the global mode of 
separation predicted by [14] has since been found to have amplitude functions of analogous structures on geometrically 
different but topologically analogous configurations, such as flow over the NACA0012 wing at an angle of attack [15] 
and low-pressure turbine blades [1]. On account of the Kutta condition present in both latter configurations, it is 
expected that the stall-cell mechanism identified on the NACA0015 airfoil will also be operative on generic airfoil and 
low-pressure turbine blade configurations. Such a speculation needs to be examined by analyses analogous to that 
presented herein and in [9, 10]. The effect of crossflow, as encountered on account of sweep in most wings of industrial 
interest is another interesting line of future investigations. Finally, as mentioned several times here, the topological 
bifurcations described occur at disturbance amplitudes of maximally levels at which the linearization 
hypothesis is still valid. Since the leading global eigenmode is unstable at the conditions monitored, the perturbation 
amplitude will grow exponentially and the flow field will undergo all the topology bifurcations described herein, until 
non-linear effects appear and saturate further growth. Further work employing three-dimensional direct numerical 
simulations is currently underway, in order to quantify the precise role of nonlinearity in the scenarios discovered 
herein. 
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